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Abstract 

Simulated anomalous-scattering differences, at wave- 
lengths between 1.5 and 5.5 A, were used with MULTAN 
to locate P atoms in an oligonucleotide hexamer. The 
success of the method depended heavily on the level of 
errors in the data. With error-free data most or all P atoms 
were located at all wavelengths. With noisy data, the best 
results were obtained by refining the phases associated 
with the largest values of [AFI/a(IAFI) rather than with 
the largest values of I AFI. In this case a few of the P- 
atom positions could be located, with the best results 
occurring at wavelengths between 3.0 and 4.0,~,. Further 
improvements were gained by reducing the values of the 
thermal parameters of the P atoms. MULTAN figures of 
merit had limited success in indicating the best phase 
sets, but a small improvement was gained by modifying 
the procedure for selecting those reflections used in the 
calculation of PSIZERO. 

Introduction 

We have investigated the use of anomalous scattering 
with direct methods in the solution of oligonucleotide 
crystals. Anomalous scattering results in a breakdown of 
Friedel's Law, that is IF+(h)l # IF-(h)l, where F+(h) 
and F- (h )  are the structure factors of the reflection and 
its Friedel mate, h and -h, respectively (Fig. 1). The 
structure factor F+(h) and the complex conjugate of its 
inverse, F-(h)*,  can be expressed as follows, 

F+(h) = Fu(h ) + FA(h ) + Fa'(h ) -- F'(h) + Fa'(h ) 

F-(h)* -- FN(h ) + FA(h ) - FA'(h ) = F'(h) - F~'(h), 

(1) 

where Fu(h ) is the structure-factor term due to the 
normal scatterers, FA(h ) is the term due to the real part of 
the scattering by the anomalous scatterers, and F~'(h) is 
the term due to the imaginary part of the scattering factor, 
Af ' ,  of the anomalous scatterers. If there is only one type 
of anomalous scatterer present in the structure, which is 
generally the case for native oligonucleotides, then F~'(h) 
is perpendicular to F),(h). The anomalous-scattering 
difference, AF(h), is related to Fa'(h) by the following 
approximation (Hendrickson, Smith & Sheriff, 1985), 
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AF(h) = IF+(h ) l -  IF-(h)l ~ 2[FA'(h)I cos(AcP), (2) 

where /%9 = ~p + v - ~0 (Fig. 1). 
In principle, the Friedel differences, IAFI, can be used 

to locate the positions of the anomalous scatterers in the 
structure. The complete structure might then be solved by 
employing one of a number to techniques which are 
available (Fan, Woolfson & Yao, 1993). At the 
wavelengths commonly used in X-ray diffraction experi- 
ments, the anomalous-dispersion effects are usually only 
significant if the structure contains a heavy-metal atom. 
Nevertheless, it has been shown by Hendrickson & Teeter 
(1981) that the anomalous differences were sufficiently 
large, with Cu Kot radiation, to solve the sulfur-contain- 
ing protein crambin. Theses authors also suggested that 
the same technique could be used to solve short 
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Fig. 1. Argand diagram of the structure factors of  the reflection and its 
Friedel mate, F+(h)  and F - (h ) ,  respectively. The structure factor of  
the inverse reflection is shown reflected across the real axis and is 
indicated as F - (h )* .  In the case considered in this work, all the 
anomalous scatterers are identical, and so v = rr/2. 
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oligonucleotide sequences such as d(CGCGCG). The 
availability of tunable radiation from synchrotron sources 
allows the collection of X-ray diffraction data at 
wavelengths extending beyond 3.0 A, where the anom- 
alous scattering from the atoms of intermediate atomic 
number in a structure becomes more significant . For 
example, Lehmann, Miiller & Stuhrmann (1993) and 
Stuhrmann, Hiitsch, Trame, Thomas & Stuhrmann, 
(1995) have made measurements for lysozyme crystals 
and ribosome crystals using X-rays with a wavelength of 
approximately 5.0 A. Therefore, the possibility exists of 
solving some protein and DNA structures by measuring 
the anomalous scattering from S or P atoms at 
wavelengths near their absorption edges of 5.018 and 
5.787A, respectively. However, at such long wave- 
lengths, absorption is considerable, although it may be 
reduced through the use of small crystals. It is thus a 
question of balancing the benefit of collecting data at a 
longer wavelength, in order to give an increased 
anomalous-scattering signal, against the problems caused 
by greater absorption. 

One approach for finding the anomalous scatterers is 
to calculate a Patterson map, using IAFI 2 as the 
coefficients (Rossmann, 1961), in which the peaks 
correspond to vectors between the anomalous scattering 
sites. Strictly IFa'l 2 should be used in the calculation, but 
both types of map have similar major features. If there 
are many sites in the structure then the interpretation of 
the map becomes rather difficult, and, in such cases, 
direct methods, utilizing observed IAF[ or IAEI values, 
provide an alternative approach. From (2), large values of 
IAFI are related to large values of lEA'l, although the 
converse is not always true; therefore, the largest I AFI  
values form a subset of the largest Ifa'l values. Since 
direct methods would make use of only the largest IAEI 
values, they are particularly suitable for locating the 
anomalous scatterers. The observed differences, IAFIobs, 
can be converted to normalized IzaEI values, and, for the 
largest differences, multiple sets of different random 
phases can be generated and then refined using the 
tangent formula. E maps calculated from the best sets of 
phases should reveal the anomalous scatterer's positions. 
Such an approach was tested by Mukherjee, Helliwell & 
Main (1989), who successfully used observed 
anomalous-scattering differences with MULTAN (Main 
et al., 1988) to determine the positions of the anomalous 
scatterers in three metalloproteins and in a small 
molecule. However, in their concluding remarks, the 
authors stated that further work was required to discover 
whether this technique would be effective in solving a 
structure containing many anomalous scatterers. 

We present here the results of using MULTAN with 
anomalous differences to locate the P atoms in 
oligonucleotide crystal structures over a range of 
wavelengths. The effect of observational errors on the 
efficacy of the methods has been investigated, and we 
suggest a method for choosing the differences which 

should be used. We also considered the effect of varying 
the thermal B factors and the number of differences used 
in the refinement. The method is limited in that the 
conventional MULTAN figures of merit are not very 
successful in discriminating the best phase sets; there- 
fore, we have considered the possibility of using 
alternative figures of merit. 

Methods 

Data simulation 

Various error-free and noisy X-ray data sets were 
simulated for the Z-DNA structure d(CGCGXG) (Van 
Meervelt, Moore, Lin, Brown & Kennard, 1990), where 
X is the modified base MeO4C. The asymmetric unit 
contains 116 C, 48 N, 148 O and ten P atoms plus 78 
water molecules. The space group is P2~2t2t. 

The program CROSSEC (Cromer, 1983) was used to 
calculate the real parts, Af ' ,  and the imaginary parts, 
A f ' ,  of the anomalous contributions to the atomic 
scattering factors for all the atoms in the structure (Table 
1). The anomalous scattering from phosphorus increases 
with wavelength, 2, up to the K absorption edge of 
phosphorus, which occurs at 5.787 A, so the data sets 
were simulated, using the program SAPI (Yao et al., 
1985), at wavelengths of 1.50, 1.80, 2.10, 2.40, 2.70, 
3.00, 3.30, 3.50, 3.70, 4.00, 5.00 and 5.50.A,. The 
resolution of the observed data for the structure 
d(CGCGXG) was 1.7 A, so the error-free data sets were 
also simulated to this resolution at the seven shortest 
wavelengths. At the five longest wavelengths, the 
resolutions of the data sets were restricted to 1.75, 
1.85, 2.00, 2.50 and 2.75 ~,, respectively, which in each 
case corresponded to the maximum allowed value of ~/2. 

The P atoms are found on the extremities of the DNA 
duplexes, and so they are subject to the greatest static and 
thermal disorder. As a result, the Debye factors, B e, of 
the P atoms are generally higher than those, B o, of the 
other atoms in the DNA molecule. The water molecules 
tend to be the most disordered, and hence their Debye 
factors, B w, are generally higher than B r, and B o. 
Although there is usually a distribution of observed Bp, 
B o and B w values, for simplicity we have assumed that 
all the P atoms have the same Debye factors, and 
similarly for the other atoms in the DNA and the water 
molecules. The static disorder in such a crystal structure 
could be reduced by producing more perfect crystals, 
whereas the thermal disorder may be reduced by 
collecting the X-ray data at a lower temperature. In this 
study, we considered the effect of reducing the B values 
on the success of the anomalous-scattering methods. For 
each of the 12 wavelengths listed above, three data sets 
were simulated, with the atoms having the following B 
factors: for set 1, Bp = 30.0, B o -- 10.0, and 
B w - 4 0 . 0 , ~ 2 ;  for set 2, Bp- -15 .0 ,  B o = 5 . 0  and 
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Table 1. Real and imaginary parts of  the anomalous 
scattering factors at various wavelengths for  the atoms in 

the structure d(CGCGXG) 

W a v e l e n g t h  C N O - P 

(A)  Af' zSf" Af' Af" Af' Af" Af' Af" 
1.5]) 0.016 0.009 0.028 0.017 0.044 0.030 0.276 0.412 
1.80 11.023 0.013 0.039 0.025 0.061 0.045 0.328 11.5811 
2.10 0.030 0.018 0.1151 0.1135 0.1178 0.061 0.365 0.769 
2.40 0.038 0.024 0.063 0.046 11.097 0.080 0.382 1.051 
2.70 0.046 11.030 0.077 0.1158 0.115 0.102 0.365 1.283 
3.00 0.055 0.038 0.090 0.072 0.134 0.126 0.314 1.529 
3.30 0.064 0.046 0.104 0.088 0.153 0.152 0.233 1.787 
3.50 11.070 0.052 0.113 0.099 0.166 0.171 0.156 1.966 
3.70 0.077 0.058 0.123 0.111 0.178 0.190 0.112 2.057 
4.00 0.086 0.068 0.137 0.129 0.197 0.221 - 0 . 0 5 6  2.337 
5.00 0.119 0.106 0.183 0.200 0.254 0.339 - 1 . 1 7 6  3.342 
5.50 0.136 0.128 0.206 0.240 0.279 11.405 - 2 . 6 6 9  3.891 

experimental data set for the structure d(CGCGXG) (Van 
Meervelt et al., 1990). The following values for the 
coefficients a, b and c were found: a = 2.85 x 10 -8, 
b = 4.15 x 10 -3 and c -- 6.90 x 102. The root-mean- 
square difference between the observed and calculated 
values of o-(I) was 24%. The experimental values of or(l) 
and the result of the least-squares fit are shown in Fig. 2. 
A random number generator based on Gaussian 
distributions with mean values of zero and standard 
deviations or(1) was then used to produce corrections ,41 
to the intensities I of the reflections. In this way, 
uncorrelated random errors were added to the intensity of 
the reflection, l(hkl), and to its Friedel mate, l(hkl), for 
all the pairs of reflections in each data set. 

B w =20.0,~,2; for set 3, B p - - 1 0 . 0 ,  B o = 3.0 and 
B w = 15.0A, 2. Set 1 corresponds to values that are 
typically found when oligonucleotide crystals are solved 
and refined using data obtained at room temperature. For 
brevity we shall henceforth refer to these sets by the Bp 
values alone. 

Since the anomalous scattering differences are often 
rather small, the accuracy of the X-ray measurements is 
obviously an important consideration. Therefore, to 
investigate the sensitivity of our methods to the accuracy 
of the data, random errors having Gaussian distributions 
were added to the error-free data sets. This was carried 
out for all the data sets using a similar procedure to that 
employed previously (Hubbard, Greenall & Woolfson, 
1994). In this earlier work, we were attempting to solve 
the structures of oligonucleotide crystals using simulated 
structure factors in the direct-methods program SAYTAN 
(Debaerdemaeker, Tate & Woolfson, 1985). The 
standard deviation o'(I) of each reflection having an 
intensity I was given a value of 1/10, which assumed that 
the background intensity was negligible. This approx- 
imation is reasonable for the strong reflections, but it is 
much less so for the weak reflections. However, since 
direct methods involve the estimation of triple-phase 
relationships between the strong reflections, the pro- 
cedure used in the earlier work was justified. In the 
present paper, we are considering large anomalous- 
scattering differences I AFI and, in principle, these may 
be found for either moderately weak or strong reflec- 
tions. Therefore, in this case we adopted a more 
sophisticated approach for simulating the noisy data 
which takes into account the presence of a background 
intensity. For each reflection of intensity 1, the standard 
deviation o'(1) was calculated from a quadratic function 
of the form, 

~r(1) = al 2 + bl + c, (3) 

where the coefficients a, b and c were determined from a 
least-squares fit of the function to the observed 
distribution of or(l) values, which were found in the 

Phase refinement 

Initially, we considered the ideal, error-free data 
simulated at the various wavelengths with different 
thermal parameters. For these data sets, we assumed that 
the large values of IAFI represented a subset of the large 
anomalous-scattering contributions from the phosphorus 
substructure, but corrupted by an unknown factor 
cos(Aq)) [see (2)]. Therefore, we attempted to solve the 
substructure by using the largest values of I AFI as 
structure amplitudes. For each of the error-free data sets, 
the true phases, derived from the phosphorus substruc- 
ture, were refined using the tangent formula. In each case 
the 250 largest values of I AFI were used in the 
refinement. Centric reflections were excluded from the 
analysis, since their anomalous scattering differences are 
zero. The procedure was then repeated starting from 800 
sets of random phase, and the mean phase error of each 
refined phase set was calculated. 

E maps were calculated for the phase set refined from 
the true phases and for that which had the lowest mean 
phase error of the sets refined from random phases. 
These calculated maps were compared with the true map, 

4000 - 

351X) 

3000 

2 5 0 0 -  

2000-  

• Experimental  values 

x Least-squares values: 

~r(I) = al 2 + bl + c 
a = 2 . 8 5  × 10 - 8  

b = 4.15 x 11) - 3  

c = 6.90 x IO 2 • .. 

• × 

• . ~ X × ~  

× 

" ~ . . ' . . . ' . . i i :  ~ • . 2 . , , , . , / d l J ~ . : 2 " "  i : ,  " :  . . ~ " " 
I O(X) ~ ~ . . ~  . • 

~ ~.,....:.: : . ,  

5 ( : ~ .  ~i~!~':y';'`:' 

[ I I b 

0.0x  10 0 5 .0x 10 4 1.0x 10 5 1.5 x II15 2 .0x 1(15 
lntensnty, 1 
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Table 2. Anomalous scattering signal, <IAFI2)I/2/ 
(IF'I2) 1/2, at various wavelengths for the atoms in the 

structure d(CGCGXG) 

The numbers  of atoms of  each kind in the asymmetr ic  unit  are shown in 

parentheses. 

(IAFI 2) I/2/ (iF,[2 ) I/2 
Wavelength  P O N C 

(A) (10) (148) (48) (116) 
1.5(1 1.41 0.39 0.13 0.10 
1.80 1.98 0.59 0.19 0.15 
2.10 2.63 0.80 0.26 0.21 
2.40 3.59 1.05 (I.34 0.28 
2.70 4.38 1.34 0.43 0.35 
3.(X) 5.22 1.66 0.54 0.44 
3.31) 6.10 2.(X) 0.66 0.53 
3.50 6.71 2.25 0.74 0.60 
3.70 7.02 2.50 0.83 0.67 
4.(X) 7.98 2.90 0.96 0.79 

5.IX) I1.41 4.45 1.50 1.38 
5.50 13.28 5.32 1.80 1.58 

in order to try to match the positions of the highest peaks 
with the true P-atom positions. 

Next, we considered the effect of adding noise to the 
error-free data sets. The method adopted here was 
slightly different from that outlined above for the error- 
free data sets. Instead of refining the phases associated 
with the largest values of IAEI, the 250 phases used were 
those associated with the largest values of 
IAFIla(IAFI) = IAEIIcr(IAEI). The justification of this 
is that it tends to select differences that are large and 
whose errors are small. We surmised that using 
differences with these two properties would improve 
the chance of solving the structure since the anomalous- 
scattering signal due to the P atoms in d(CGCGXG) is 
rather weak, particularly at the shorter wavelengths 
(Table 2) and, therefore, error prone. Most of the results 
presented here were obtained using this method, which 
we will call procedure 1. To test whether this was indeed 
the best way in which to select the differences, we also 
tested two alternatives. In procedure 2 the phases 
associated with the 250 largest values of IAEI/~r(IAFI) 
were refined in the tangent formula. Procedure 3 was that 
described by Mujherjee, Helliwell & Main (1989), who 
used the phases associated with the largest values of 
I AEI, but who excluded the error-prone weak reflections 
with Fob s < 4o(Fobs) and also any reflections for which 
IAEI > 5 x r.m.s.(IAEI). 

In each case described above, we have refined 250 
phases. This number was selected rather arbitrarily and, 
therefore, we have also investigated the effect of varying 
the number of phases used in the refinement between 150 
and 400. 

The quality of the refined phase sets was judged 
according to the standard MULTAN figures of merit 
ABSFOM, PSIZERO and RESID, and also from a 
combined figure of merit, CFOM, plus the experimental 
figure of merit, TFOM (which is defined by Hubbard et 
al., 1994). Unless otherwise stated, the weights asso- 

ciated with ABSFOM, PSIZERO and RESID used to 
calculate CFOM were given their default values of 0.60, 
1.20 and 1.20, respectively. 

Results 

Strength of the anomalous signal 

It is useful to calculate the expected r.m.s, value of the 
anomalous-scattering difference, (IAFI2) 1/2, expressed 
as a fraction of the expected value of the total scattering, 
(IF'I2) 1/2, at zero scattering angle, which is given by 
(Hendrickson, Smith & Sheriff, 1985), 

((IAFI2)I/2)/((IF'I2) 1/2) 21/2(NA/NXI/2tAr'/Z 
---- I t ~ J A  I eft / ,  

(4) 

where N a is the number of anomalous scatterers per 
molecule, N is the number of non-H atoms per molecule, 
and ZeF r is the effective average atomic number [which is 
approximately 6.7 for proteins and 7.3 for oligonucleo- 
tides (Hendrickson & Teeter, 1981)]. The results (Table 
2), show that the anomalous scattering due to the P atoms 
is the dominant effect, accounting for about 60-70% of 
the total anomalous scattering at each wavelength. 
However, other atoms in the structure, in particular the 
O atoms, also produce a significant anomalous-scattering 
signal, especially at the longer wavelengths. 

Refinement with error-free data 

The results of the phase refinements are summarized in 
Tables 3, 4 and 5. They show that, except at the two 
longest wavelengths, a good set of phases can be found 
by refining multiple sets of random phases using the 
error-free data, in the sense that the E map calculated 
from these phases reveals most if not all of the P-atom 
positions in the structure (for example, see Table 6). 
Therefore, in principle, a MULTAN run starting from 
multiple sets of random phases can produce a substan- 
tially correct solution. 

The mean phase errors are smaller at the shorter than at 
the longer wavelengths, although this general trend is 
blurred by statistical fluctuations. In particular, at the two 
longest wavelengths, 5.00 and 5.50A, the results 
obtained from both refining the true phases and refining 
random phases are markedly worse. This is because, at 
the shorter wavelengths, the 250 phases used in the 
refinement were chosen from a larger set of data 
extending to a resolution of 1.7,4,, whereas the resolu- 
tions of the data sets at the longer wavelengths were 
necessarily more restricted. Therefore, at the shorter 
wavelengths, the normalized IAEI values were in general 
larger and so the phase relationships were more reliable. 
Consequently, the phases associated with the largest 
values of I AFI refined to give lower mean phase errors. 

Hubbard, Greenall & Woolfson (1994) showed that 
attempts to solve the structure (dCGCGXG) by refining 
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Table 3. Results obtained using MULTAN with anom- 
alous scattering data sets for  the structure d(CGCGXG) 

Table 4. Results obtained using MULTAN with anom- 
alous scattering data sets for  the structure d(CGCGXG).  

These data sets were simulated with the P atoms having thermal factors: 
Bp = 30/~2. For each data set of  wavelength 2, NAR gives the number  
of  pairs of  acentric reflections and RES specifies the resolution. For the 
error-free data sets, the phases associated with the 250 largest values o f  Wavelength 

,;. (A) NAR 
IzaEI were refined by the tangent formula. For the noisy data sets, the 1.50 2233 
phase refincment used the 250 largest values of  IAFI/cr(IAFI). For 
each data set, the upper figure gives the mean phase error (~), calculated 1.8(] 2233 
from the ten P-atom positions in the asymmetr ic  unit, alter the true 
phases were refined. The lower figure gives the lowest mean phase error 2. I0 2233 
C) after phase refinement using the tangent formula, starting from 800 
sets o f  different random phases. For each of  the resulting E maps, the 2.40 2233 

number  of  peaks at distances < 1.0,~, from true P-atom positions, 2.70 2233 
together with the number  o f  the lowest successfully matched peak, are 
given in parentheses. For the noisy data scts, the average signal-to-noise 3.(x) 2233 
ratio, IAk'l/cr(IAFI), is given for all the acentric reflections (SNRAt 1) 
and for the 250 acentric reflections with the largest values of  3.30 2233 
IAFI/a(IAFI) which were used in the phase refinement (SNR,~0). 

3.5[) 1937 

3.70 1709 

4.(~) 1331 

5.(X} 988 

5.50 758 

Wavelength RES Error-flee Noisy 
2 (A) NAR (,~) data data SNR,u SNR:5., 
1.50 2233 1.70 17 (10/10) 64 (4/10) 0.61 2.10 

21 (10/10) 75 (1/1) 
1.811 2233 1.70 19 (10/10) 65 (4/10) 0.62 2.13 

28 (10/101 73 (2/5) 
2.10 2233 1.70 21 (10/10) 69 (2/5) 0.63 2.17 

22 (10/10) 75 (I/21 
2.40 2233 1.70 16 (10/101 61 (5/131 0.64 2.25 

41 (10/13) 70 (2/20) 
2.70 2233 1.70 19 (10/101 54 (7/15) 0.65 2.34 

31 (10/101 72 (I/I)  
3.(~) 2233 1.70 19 (10/10) 63 (3/4) 0.65 2.45 

42 (9/111 69 (1/I) 
3.30 2233 1.70 18 (10/10) 64 (3/8) 0.65 2.59 

36 (10/111 69 (I/I) 
3.50 1937 1.75 22 (10/101 63 (2/17) 0.72 2.8(I 

36 (10/121 58 (4/101 
3.70 1709 1.85 20 (10/101 63 (4/161 0.79 2.79 

30 (10/10) 66 (I/11 
4.00 1331 2.00 18 (10/101 57 (4/111 0.89 2.81 

52 (7/18) 66 (2/4) 
5.(~) 988 2.50 36 (10/101 69 (3/171 1.44 3.66 

61 (6/191 65 (3/131 
5.50 758 2.75 65 (3/7) 41 (7/101 1.91 3.92 

64 (5/7) 65 (4/191 

As for Table 3, except that these data sets were simulated with the P 
atoms having thermal factors B e = 15 ~2. 

RES Error-free Noisy 
(,~,) data data SNR~, u SNR25~j 
1.7(,I 15 (10/10) 63 (5/11) 0.73 2.20 

15 (10/10) 76 (1/16) 
1.70 15 (10/10) 64 (3/8) 0.74 2.29 

32 (10/11) 68 (1/1) 
1.70 14 (tO/10) 59 (5/11) 0.77 2.42 

17 (10/10) 72 (I/I)  
1.70 15 (10/10) 42 (8/14) 0.81 2.64 

17 (10]10) 69 (3/5) 
1.70 14 (10/10) 42 (9/9) 0.84 2.90 

19 (10/101 61 (2/3) 
1.70 14 (10/10) 36 (9/10) 0.88 3.19 

19 (10/10) 59 (2/3) 
1.70 14 (10/10) 30 (10/131 (I.91 3.54 

27 (10/10) 59 (3/61 
1.75 15 (10/10) 34 (9/15) 0.98 3.70 

15 (10/101 59 (3/6) 
1.85 18 (10/101 39 (10/14) 1.08 3.77 

15 (10/10) 62 (3/10) 
2.(~) 19 (10/10) 27 (lO/ll) 1.22 4.21 

37 (111/121 62 (2/16) 
2.50 62 (5/11) 65 (4/191 2.27 5.32 

58 (5/16) 64 (3/15) 
2.75 50 (6/9) 41 (9/18) 3.12 5.74 

60 (3/5) 61 (4/6) 

Table 5. Results obtained using MULTAN with anom- 
alous scanering data sets for  the structure d(CGCGXG) 

As for Table 3, except that these data sets were simulated with the P 
atoms having thermal factors Bp = 10 A-'. 

Wavelength RES Error-free Noisy 
). CA) NAR (,~) data data S N R A H  SNR~s, 
1.50 2233 1.70 16 (1(1/10) 66 (2/4) 0.78 2.25 

19 (111/10) 75 (1/11 
1.80 2233 1.70 16 (10/10) 52 (5/6) 0.81 2.39 

16 (10/10) 72 (1/1) 
2.10 2233 1.70 16 (10/10) 54 (5/151 0.85 2.59 

17 (10/10) 64 (2/10) 
2.40 2233 1.70 16 (1(1/10) 37 (9/161 0.93 2.98 

multiple sets of  random phases in the tangent fbrmula 23 (10/10) 65 (3/111 
2.70 2233 1.70 16 (10/101 31 (10/131 I.(~) 3.33 

were unsuccessful, even when using the exact simulated 43 (8/13) 57 (2/10) 
IFI values~ if the resolution of  the data was worse than 3.(~) 2233 1.70 16 (10/10) 25 (10/111 1.07 3.77 
about 1.0A. However, the results given here show that ~6 (10/101 56 (4/18) 

3.3(I 2233 1.70 17 (10/10) 25 (10/121 1.15 4.20 
the P atoms can be located from random starting phases ~9 (10/10) 54 (4/14) 
using the error-free simulated IAFI values, when the 3.5o 1937 1.75 18 (10/10) 23 (10/10) 1.19 4.42 

26 (10110) 56 (6/151 
resolution of  the data is in the range 1.7-2.0A. 3.7o 1709 1.85 20 (10/101 33 (10/161 1.29 4.55 

Therefore, success in using direct methods with anom- 20 (10/10) 48 (6/8) 
alous-sca'er;n - ~  ~ , e  differences is less cr;,icalh,., -.7 '-" v '-- -ae'enaen* 4.(x) 1331 2.(x) 23 (10/101 22 (10/10) 1.54 5.07 

53 (8/11) 44 (9/18) 
upon having high-resolution data. The reason for this is 5.(~) 988 2.50 61 (5/12) 65 (4/16) 2.86 6.01 

that the P atoms are separated by about 6.0-8.0 ,~,, so that 62 (4/9) 63 (5/181 

t.y'~'e' can be resolved us'n~,~ lower resolution data. 5.5o 758 2.75 51 (5/9) 65 (4/6) 3.64 6.43 
62 (4/9) 63 (4/10) 

The main conclusion from this is that, in principle, one 
can determine the positions of  the P atoms in an 
oligonucleotide structure using this approach. 

Refinement with noisy data 

The results of  refinements using the noisy data sets are 
also given in Tables 3, 4 and 5. The results clearly 

demonstrate the extreme sensitivity of  the method to the 
accuracy of  the anomalous-scattering differences. 
However, this is only to be expected, given the relatively 
small size of  the anomalous-scattering signal, in 
particular at the shorter wavelengths (see Table 2). With 
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Table 6. List of the 12 highest peak positions in the E 
map calculated from the best set of refined phases, 
having a mean phase error of 19 °, after refinement of 
multiple sets of random phases using the error-free data 

simulated at 2 = 1.5 A with Bp = 10,( 2 

T h e  true c o o r d i n a t e s  o f  the P - a t o m  pos i t i ons  ( P 1 - P I 0 ) ,  w h i c h  w e r e  

m a t c h e d  wi th  the peak  pos i t ions ,  are g i v e n  b e l o w  the  peak  coord ina t e s .  

T h e  c o r r e s p o n d i n g  d i s t ances  b e t w e e n  the true P - a t o m  pos i t i ons  and the 

peak  pos i t i ons  are  a lso  s h o w n .  

Peak  Peak  F rac t iona l  c o o r d i n a t e s  D i s t ance  

No.  he igh t  x/a y/b z/c (A) 
1 1907 -0 .175  0.270 -0.481 

(PI) -0 .183  -0 .729  0.522 0.2 ~4 
2 1883 -0 .676  0.270 -0 .017  

(P2) 0.328 0.270 -0 .016  0.084 
3 1738 -0 .300  0.315 -0 .342  

(P3) -0 .305  -0 .686  0.657 0.087 
4 1357 -0 .830  0.401 0.356 

(P4) O. 165 -11.597 0.354 O. 126 
5 1226 -0 .517  0.423 -0 .187  

(P5) 0.482 0.425 I).813 0.061 
6 1162 -0 .984  0.414 0.489 

(P6) 0.008 -0 .590  0.490 0.200 
7 1143 -0 .157  I).313 -0 .119  

(P7) 0.849 0.308 0.879 0.220 
8 1093 -0 .944  0.494 -0 .296  

(P8) 0.054 0.491 0.703 0.119 
9 994 -0 .885  0.394 -0 .175  

(P9) O. 120 0.401 0.826 0.226 
10 900 -0 .420  0.346 11.050 

(PIO) 0.592 0.345 0.052 0.241 
I I 715 -0 .171 0.387 0.193 

- -  Spurious peak - -  
12 604 -0 .480  0.489 -0 .225  

- -  Spurious peak - -  

Table 7. List of the 12 highest peak positions in the E 
map calculated from the best set of refined phases, 
having a mean phase error of 75 °, after refinement of 
multiple sets of random phases using the noisy data 

simulated at 2 = 1.5`( with Bp = 10`( 2 

T h e  true c o o r d i n a t e s  o f  the P - a t o m  pos i t i ons  ( P 1 - P I 0 ) ,  w h i c h  w e r e  

m a t c h e d  wi th  the  peak  pos i t ions ,  are  g i v e n  b e l o w  the peak  coord ina t e s .  

T h e  c o r r e s p o n d i n g  d i s t ances  b e t w e e n  the true P - a t o m  pos i t i ons  and the 

peak  pos i t i ons  are  a lso  s h o w n .  

Peak  Peak  F rac t iona l  c o o r d i n a t e s  D i s t a n c e  

No.  h e i g h t  x/a y/b z/c (A) 
1 2830 0.603 0.165 0.062 

(PI) 0.592 -0 .845  0.068 0.568 
2 765 0.134 0.168 0.206 

- -  Spurious peak - -  
3 733 0.594 0.201 0.562 - -  

- -  Spurious peak - -  
4 691 0.607 0.234 0.328 

- -  Spurious peak - -  
5 678 0.550 0.090 0.070 

- -  Spurious peak - -  
6 65 ! 0.537 0.058 O. 185 

- -  Spurious peak - -  
7 650 0.840 0.042 0.806 

- -  Spurious peak - -  
8 648 0.905 0.068 0.467 

- -  Spurious peak - -  
9 636 0.893 0.202 0.502 

- -  Spurious peak - -  
lO 635 0.599 0.2118 0.814 

- -  Spurious peak - -  
I I 619 0.536 0.175 0.613 

- -  Spurious peak - -  
12 608 0.390 0.164 0.086 

- -  Spurious peak - -  

the noisy data sets, even refinement of the true phases 
generally fails to provide good solutions. In several 
cases, especially when Bp = 30 `(2, the true phases refine 
to give mean phase errors that are greater than 60 ° , and 
the resulting E maps revealed only a few of the P-atom 
positions. The true phases tend to refine better at the 
longer wavelengths, although there are statistical 
fluctuations in this general trend. The explanation for 
this is that the anomalous-scattering signal is stronger at 
the longer wavelengths, giving higher average signal-to- 
noise ratios, which means that the phase refinements at 
these wavelengths are less susceptible to noise in the 
data. 

When multiple sets of initially random phases are 
refined using the noisy data, the best phase sets usually 
give partial solutions, with only one or a few P-atom 
positions being located in the resulting E maps (for 
example, see Table 7). Again the better solutions tend to 
be found at the longer wavelengths where the 
anomalous-scattering signal is greater. 

The effect of varying the B factors 

Comparison of the results in Tables 3, 4 and 5 
illustrates the effect of reducing the values of the thermal 
parameters of the P atoms in the structure. For the error- 
free data sets, the results in the lower B-factor cases show 

a general improvement on those in the higher B-factor 
cases. When the true phases were refined, the final mean 
phase errors were, in general, slightly smaller for the 
lower B-factor data sets. Further, when multiple sets of 
random phases were refined, the smallest mean phase 
errors for the lower B-factor data sets corresponded to 
good solutions and were mostly smaller than for the 
higher B-factor data sets. 

The results for the noisy data sets simulated with lower 
B factors were generally superior to those for the 
corresponding noisy data sets simulated with higher B 
factors. The phase refinements of both the true phases 
and of multiple sets of random phases were more 
effective in the lower B-factor cases. However, the 
accuracy of the anomalous-scattering differences was 
still the most critical factor affecting the success of the 
method in these cases. 

Selecting the best differences 

The three procedures for phase refinement using noisy 
data, described above, were tested using the data sets 
simulated with Bp -- 10 `(2 over a range of wavelengths. 
A comparison of the results obtained using each of the 
three procedures is given in Table 8. The first two 
procedures give generally similar results after refinement 
of both the true and the random phases. However, the 
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Table 8. Comparison of three different procedures for 
determining P-atom positions using noisy data sets 

As for the noisy data sets in Table 5 with Bp = 10,~ 2, except that each 
of the following three procedures was tested. Procedure 1, tangent phase 
ref inem~t of the 250 reflections having the largest values of 
IAFl#r(IzaFI). Procedure 2: tangent phase refinement of the 250 
reflections having the largest values of IAEI#r(IAFI). Procedure 3: 
tangent phase refinement of the 250 reflections having the largest values 
of IzaEI, but excluding any reflections with F < 4or(F) or with 
IzaEI > 51AEI . . . . . .  • 

Wavelength RES Noisy data 
2 (A) NAR (A) Procedure 1 Procedure 2 Procedure 3 

1.50 2233 1.70 66 (2/4) 52 (6/17) 61 (4/17) 
75 (1/I) 65 (I/I) 74 (1/I) 

1.80 2233 1.70 52 (5/6) 66 (2/4) 70 (2/3) 
72 (1/1) 68 (1/1) 71 (I/1) 

2.10 2233 1.70 54 (5/15) 47 (6/8) 63 (2/5) 
64 (2/10) 64 (2/15) 67 (I/1) 

2.40 2233 1.70 37 (9/16) 39 (8/9) 68 (I/1) 
65 (3/11) 57 (2/5) 66 (2/12) 

2.70 2233 1.70 31 (10/13) 31 (10/18) 41 (9/18) 
57 (2/10) 57 (3/4) 65 (2/12) 

3.00 2233 1.70 25 (10/11) 24 (10/10) 40 (9/1 I) 
56 (4/18) 56 (3/3) 61 (3/4) 

3.30 2233 1.70 25 (10/12) 23 (10/10) 26 (10/1 I) 
54 (4/14) 55 (4/I 1) 55 (6/17) 

3.50 1937 1.75 23 (10/10) 26 (10/10) 41 (7/14) 
56 (6/15) 55 (4/10) 63 (2/2) 

3.70 1709 1.85 33 (10/16) 40 (9/15) 30 (9/14) 
48 (6/8) 41 (8/10) 56 (5/19) 

4.00 1331 2.00 22 (10/10) 23 (10/10) 28 (10/15) 
44 (9/18) 50 (6/10) 62 (1/1) 

5.(X) 988 2.50 65 (4/16) 65 (4/12) 64 (4/19) 
63 (5/18) 64 (2]4) 64 (3/18) 

5.50 758 2.75 65 (4/6) 52 (7/I 1 ) 65 (4/6) 
63 (4/10) 61 (4/19) 63 (4/10) 

Table 9. The effect of varying the number of largest 
IAFIflr(IAFI) values used in the phase refinement 

TheonOisy data sets simulated at the wavelengths 2 = 3.7, 4.0, 5.0 and 
5.5A with Bp = 10,~, 2 were tested as in Table 5, but using different 
numbers (NREF) of the largest [AFI/~r(IAFI) values. The number of 
pairs of acentric reflections (NAR) is also given for each data set. 

Noisy data 
Wavelength 2 (,~) 

3.7 4.0 5.0 5.5 
NAR 

NREF 1709 1331 988 758 
150 27 (10/16) 30 (10/18) 43 (7/10) 57 (5/16) 

51 (7/7) 60 (4/19) 51 (4/6) 57 (6/20) 
2(X) 33 (9/15) 27 (10/15) 61 (4/16) 64 (4/20) 

49 (6/20) 55 (4/9) 55 (5/9) 64 (4/17) 
250 33 (10/16) 22 (10/10) 65 (4/16) 65 (4/6) 

48 (6/8) 44 (9/18) 63 (5/18) 63 (4/10) 
3(X) 33 (10/I 1) 20 (10/10) 65 (5/18) 41 (9/15) 

55 (6/8) 63 (3/16) 61 (5/15) 65 (4/11) 
350 31 (10/10) 21 (10/10) 67 (3/12) 33 (10/12) 

60 (5/9) 63 (5/14) 66 (3/11) 65 (4/11) 
4f~) 29 (10/10) 24 (10/10) 67 (3/16) 37 (10/12) 

62 (5/14) 61 (4/13) 66 (3/13) 66 (4/9) 

wavelengths. Although we thus increase the number of 
three-phase relationships employed in the tangent 
formula, the additional relationships are in general not 
so reliable and so the phase refinement is less effective. 
In Table 9, the best solution found after refining random 
phases had a mean phase error of 44 ° and was obtained 
using the 250 largest values of I~FI/cr(IAFI) in the 
noisy data set simulated at 2 = 4.0 A. 

refined sets of phases produced using the third procedure 
are in several cases markedly worse than, and at best 
similar to, the corresponding sets of phases obtained 
using the first two procedures. Therefore, it would seem 
that refining the phases associated with the largest values 
of IAFI/cr(IAF[) or IAEI/cr(IAFI) is more effective than 
refining the phases associated with the largest values of 
IAEI as in procedure 3. 

Varying the number of differences used 

For the noisy data sets, after refinement of initially 
random phases associated with the 250 largest values of 
IAFI/cr(IAFI), the best results shown previously were 
those obtained using the data simulated at the longer 
wavelengths with Bp = 10,~2. Therefore, we considered 
the effect of varying the number of large IAFlflr(IAFI) 
values used in the phase refinement for the noisy data 
sets with Bp = 10 ~2 at wavelengths of 3.7, 4.0, 5.0 and 
5.5,~. The results are shown in Table 9. Allowing for 
statistical variations, the phase refinement is most 
effective when using between 150 and 250 of the largest 
IAFI/cr(IAFI) values. If we further increase the number 
of phases included in the refinement, we start to include 
reflections with smaller values of IAFI/~r(IAFI), due to 
the limited resolutions of the data at these longer 

Efficacy of the MULTAN figures of merit 

An important consideration is whether the phase sets 
having the lowest mean phase errors were also indicated 
as good solutions by the conventional figures of merit 
employed in MULTAN. ABSFOM measures the extent to 
which the triplet phase relationships hold: it is zero for 
random phases and unity for correct phases. RESID 
measures the discrepancy between the actual and the 
estimated values of the phases: it should be small for 
correct phases. The expected value of PSIZERO is unity 
for correct phases. The combined figure of merit CFOM, 
when calculated with the default weighting scheme, takes 
values in the range 0-3, with the best phase sets having 
the highest values. TFOM is a measure of the difference 
between the cosines of the structure invariants and their 
theoretical expectation values; therefore, low values of 
TFOM indicate good phase sets. 

An examination of our results, which have been 
presented in detail by Hubbard (1994), showed that these 
figures of merit were not always effective in determining 
the sets of refined phases corresponding to the best 
solutions. For example, with error-free data at a 
wavelength of 1.5 A, the best phase set (i.e. that with 
the lowest mean phase error) was indicated by the 
maximum CFOM and the minimum RESID and TFOM, 
but the set with the maximum ABSFOM was not a 
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solution. At a wavelength of 2.7 ,A, the best set had only 
the sixth highest CFOM; the set with the maximum 
CFOM and the minimum TFOM had a low mean phase 
error, but it was not the best; and the set with the 
minimum RESID and the maximum ABSFOM had 
essentially random phases. When the wavelength was 
increased further to 4.0 A the best set was not indicated 
by any figure of merit, and the sets with the best figures 
of merit had random phases. The results were worse 
when noise was added to the data: at the short 
wavelength the best set was indicated by the maximum 
ABSFOM but by no other figures of merit; at the 
intermediate and long wavelength the best set was not 
indicated by any figure of merit, and the sets with the 
optimum figures of merit were not even partial solutions 
of the structure. PSIZERO was unsuccessful at indicating 
good phase sets in all cases. The conclusion to be 
reached from these results is that the MULTAN figures of 
merit are only poorly discriminating for phase sets 
generated from limited resolution data. This corroborates 
the work of Mukherjee & Woolfson (1993), who applied 
the direct-methods program SAYTAN to data sets at 
various restricted resolutions for the protein structure 
aPP, and who found that the conventional figures of 
merit were not very effective in selecting the best phase 
sets. Therefore, we decided to explore ways in which the 
figures of merit used in MULTAN could be made more 
effective in selecting the best refined phase sets 
associated with anomalous-scattering partial structure. 

First, since PSIZERO had proved to be particularly 
unreliable, we considered the effect of excluding it from 
the calculation of CFOM. The refinement of multiple sets 
of random phases was repeated for the error-free data sets 
simulated at wavelengths of 1.5 and 2.7,~, with 
Bp = 10,Aft, and CFOM was calculated only from the 
values of ABSFOM and RESID, both with weights of 
1.50. However this modified weighting scheme gave no 
improvement in the discrimination of the best phase sets 
using CFOM. 

PSIZERO is likely to be unreliable in selecting good 
phase sets with anomalous data since small values of 
IAEI are involved in its calculation, in addition to the 
large IAEI values employed in the phase determination 
and, even in the case of error-free data, small anomalous 
differences do not necessarily correspond to small values 
of IFA'I. Therefore, we considered trying to improve 
PSIZERO by selecting the 50 smallest values of IAEI, 
used in its calculation, from amongst only the weak 
reflections. This was done by, first, finding the 100 
smallest values of IF+I + IF-I, since it is more probable 
that the values of If,~'l are small for weak reflections. 
Then, from these differences, we selected the 50 which 
had the smallest values of I AFI. With the error-free data 
set simulated at 1.5 A, wavelength, the mean value of IFA' I 
for the 50 smallest I AFI values was 0.911, whereas for 
the 50 small IAFI values selected from amongst the 
weakest reflections, the mean value of IFA'I was 0.835. At 

2 = 2.7 ,~,, the mean value of IF,~'l for the 50 smallest 
I AFI values was 2.831, whereas for the 50 small I AFI 
values selected from the weak reflections, the mean value 
of IFA'I was 2.608. These IAFI values were all set equal 
to 0.001, in order to ensure that MULTAN used them to 
calculate PSIZERO. The refinement of both the true 
phases and multiple sets of initially random phases was 
then repeated using the low B factor, error-free data at the 
wavelengths of 1.5 and 2.7 ,~,. 

When the true phases were ref'med against the error- 
free data at a wavelength of 1.5 ,~, PSIZERO was 1.511 if 
the new selection procedure was used compared to the 
value of 2.000 attained earlier. After refining initially 
random phases the best solution with a mean phase error 
of 19 °, which previously had a PSIZERO of 2.031 and 
the maximum CFOM of 2.215, now had a PSIZERO of 
1.549 and still had the maximum CFOM of 2.460. Other 
good solutions found in this case similarly had lower 
values of PSIZERO and so higher values of CFOM than 
observed previously. Therefore, the effectiveness of 
PSIZERO seemed to have been improved by the new 
selection procedure. However, it was still not a reliable 
figure of merit when used on its own, since some poor 
phase sets had low values of PSIZERO. For example, 
one refined set of phases was obtained having a 
PSIZERO of 1.387 and the ninth highest CFOM of 
2.023, but the mean phase error for this set was 83 ° . 

A similar pattern was found using the error-free data at 
), = 2.7,~. Refining the true phases gave a set of phases 
having a PSIZERO of 1.526, which was less than the 
value of 1.792 obtained previously. After refining 
initially random phases it was again found that the best 
solutions had lower values of PSIZERO and so higher 
values of CFOM than those obtained previously. There- 
fore, this selection procedure for the small IAEI values 
again provided an improvement in the figures of merit. 

Finally, we considered the use of alternative figures of 
merit for selecting the best phase sets generated from 
lower resolution data. The modified figures of merit 
proposed by Mukherjee & Woolfson (1993) were applied 
to the refinement of multiple sets of initially random 
phases using the low B factor, error-free data set 
simulated at 2 = 4.0.~, at a resolution of 2.0,~,. The 
MULTAN figures of merit - ABSFOM, PSIZERO and 
RESID - were replaced by the modified figures of merit 
ABSM, PSIM and RESM, respectively. A combined 
figure of merit, CFOM, which was a weighted sum of the 
other three figures of merit, was also calculated. The 
weights associated with ABSM, PSIM and RESM in the 
calculation of CFOM were 0.60, 1.20 and 1.20, 
respectively. 

For the error-free data at 2 = 4.0A, after again 
refining multiple sets of random phases, the best solution 
having a mean phase error of 53 ° was not distinguished 
by the modified figures of merit. The value of CFOM 
(2.227) for this set of phases was relatively small and all 
the sets of phases with the highest values of CFOM had 
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mean phase errors greater than 70 ° . Therefore, the 
application of the modified figures of merit suggested by 
Mukherjee & Woolfson (1993) did not give any 
improved discrimination of the best phase sets in this 
case. 

Discussion 

The results presented above clearly show that MULTAN 
is successful in locating the positions of the anomalous 
scatterers when the data are error-free, but it is much less 
effective when relatively small amounts of random noise 
are added to the intensities. The reason for this sensitivity 
to errors in the data can be illustrated by plotting graphs 
of the largest values of [AF[ versus the corresponding 
values of IFA'I due to the P atoms, which are calculated 
using, 

IF~'l -- [Af" exp ( - B  sin 2 0/22) 
i 

× ~ exp i2rc(hxj + ky i + lzj), (5) 
)=1 

where the summation is over all the N = 40 P atoms in 
the unit cell. Such graphs were plotted for both the error- 
free and noisy data sets simulated at the wavelengths of 
1.5, 2.7 and 4.0.A,, with Bp = 10.0,~fl, showing the 250 
largest values of ]AFI in each case (Fig. 3). 

For the error-free data sets at each of the three 
wavelengths, it is apparent that the very largest values of 
IAF[ correspond to large values of IFA'I, which are the 
required Fourier coefficients. However, because these 
two quantities are related by a trigonometric factor [(2)], 
the very largest values of IF~'I do not necessarily 
correspond to the largest values of I AFI. Nevertheless, 
since the 250 largest values of IAFI include no very 
small values of IF~'I, these IAFI values can be 
successfully used in MULTAN to find a solution by 
refining multiple sets of random phases. 

For the noisy data sets at each of the three 
wavelengths, there is no longer any correlation between 
the largest values of IAFI and the large values of IU(I. In 
each of these cases, the 250 largest values of I AFI 
include both large and small values of IFA'I, so that the 
direct-methods procedure is less effective in refining the 
phases associated with the phosphorus substructure. 

Concluding remarks 

We have shown that, |br error-free data sets, good 
solutions can usually be found starting from initially 
random phases, with the resulting E maps revealing most 
if not all of the P atoms in the structure. However, the 
success of this method is very sensitive to relatively 
small errors in the values of IAFI, so that for the noisy 

data sets the phase refinement is much less effective, 
particularly at the shorter wavelengths. We have also 
established that of the three procedures for phase 
refinement in the tangent formula using noisy data, 
procedures 1 and 2 are more effective than procedure 3. 
The phase refinement was found to be most effective 
when using between 150 and 250 of the largest 
IAFI/c~(IAFI) values. The lower B-factor data sets 
generally give better results than do those simulated 
with higher B factors, although the accuracy of the I AFI 
values is still the most critical factor affecting the success 
of the phase refinement in these cases. The figures of 
merit used in MULTAN have difficulty in identifying the 
best phase sets, although the procedure we have devised 
for selecting the reflections to be used in the calculation 
of PSIZERO does result in a small improvement. 

The successful determination of the structure of the 
protein crambin was based upon the measurement of a 
very small anomalous-scattering signal due to the S 
atoms, which allowed their positions to be found. This 
work provided encouraging evidence that a similar 
approach could be successfully applied to solve DNA 
crystal structures. The sensitivity of our method to the 
presence of small errors in the IAFI values makes the 
solution of the structure of crambin appear all the more 
remarkable. However, it was pointed out by Hendrickson 
et al. (1985) that, by employing suitable data-collection 
strategies, the values of [AF[ can often be measured 
more accurately than those of IFI. In order to achieve 
this, firstly the [AFI values should be measured from the 
same crystal, so that major scaling errors can be 
eliminated. Secondly, if the pairs of Friedel mates are 
measured close together in time, then errors due to 
radiation damage or variations in the beam intensity are 
minimized. Finally, one should measure the Friedel pairs 
such that the paths traced by the diffracting rays through 
the crystal are similar for both of the reflections. In this 
case the absorption corrections for the two measurements 
will be nearly equivalent for favourable crystal morphol- 
ogies. Numerical techniques can be applied to remove 
many of the residual experimental errors in the 
anomalous-scattering difference measurements. Systema- 
tic errors due to uncorrected absorption differences can 
be effectively minimized by using local scaling factors. 
Such procedures were very important in the case of 
crambin, where factors in the range 0.97-1.01 removed 
errors which otherwise completely masked the anom- 
alous-scattering signal. 

The method which we have described here is not 
dependent upon having high-resolution data, in contrast 
to the case in which attempts were made to solve 
oligonucleotide crystals from the IFI values using direct 
methods. Since many oligonucleotide crystals have been 
solved from rather limited resolution (> 2.0 A) data sets, 
in particular the B-form crystals, the anomalous-scatter- 
ing method could be quite generally applicable to solving 
these structures. In the case of crambin, it was seen that 
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anomalous-scattering techniques could be successful 
even at the Cu Kce wavelength. The anomalous signal 
does however increase markedly as the phosphorus 
absorption edge is approached, and we have shown that 
the most favourable wavelength at which to record the 

data is between 3.0 and 4.0 ,~ if the anomalous scatterers 
are to be located by direct methods. The availability of 
synchrotron-radiation facilitates collection of data at such 
wavelengths, and, as stated previously, the absorption 
might be reduced by using very small crystals. 
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Fig. 3. Graphs of the 250 largest values of I AFI  versus the correspondin~ values of IF~'I due to the P atoms in the structure d(CGCGXG), calculated 

for both the error-free and the noisy data sets with Bp values of 10.0A 2. Graphs on the left are for error-free data, and those on the right are for 
noisy data. (a) and (b) 2 = 1.5 A; (c) and (d) 2 = 2.7,~; (e) and ( f )  2 = 4.0.~. 
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